Physically, Fully-Distributed Hydrologic Simulations Driven by GPM Satellite Rainfall over an Urbanizing Arid Catchment in Saudi Arabia
نویسندگان
چکیده
A physically-based, distributed-parameter hydrologic model was used to simulate a recent flood event in the city of Hafr Al Batin, Saudi Arabia to gain a better understanding of the runoff generation and spatial distribution of flooding. The city is located in a very arid catchment. Flooding of the city is influenced by the presence of three major tributaries that join the main channel in and around the heavily urbanized area. The Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) rainfall product was used due to lack of detailed ground observations. To overcome the heavy computational demand, the catchment was divided into three sub-catchments with a variable model grid resolution. The model was run on three sub-catchments separately, without losing hydrologic connectivity among the sub-catchments. Uncalibrated and calibrated satellite products were used producing different estimates of the predicted runoff. The runoff simulations demonstrated that 85% of the flooding was generated in the urbanized portion of the catchments for the simulated flood. Additional model simulations were performed to understand the roles of the unique channel network in the city flooding. The simulations provided insights into the best options for flood mitigation efforts. The variable model grid size approach allowed using physically-based, distributed models—such as the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model used in this study—on large basins that include urban centers that need to be modeled at very high resolutions.
منابع مشابه
Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products
In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze...
متن کاملThe impact of an urbanizing tropical watershed to the surface -runoff
The lack of hydrological data for urbanizing watersheds in developing countries is one of the challenges facing decision making. Msimbazi River is located in the city center of Dar es Salaam and is highly influenced by human activities; this includes dense populations that are characterized by informal settlements. The catchment is currently undergoing flooding, which triggers a dilemma in its ...
متن کاملHydrological Impacts of Urbanization of Two Catchments in Harare, Zimbabwe
By increased rural-urban migration in many African countries, the assessment of changes in catchment hydrologic responses due to urbanization is critical for water resource planning and management. This paper assesses hydrological impacts of urbanization on two medium-sized Zimbabwean catchments (Mukuvisi and Marimba) for which changes in land cover by urbanization were determined through Lands...
متن کاملComparative Assessments of the Latest GPM Mission's Spatially Enhanced Satellite Rainfall Products over the Main Bolivian Watersheds
The new IMERG and GSMaP-v6 satellite rainfall estimation (SRE) products from the Global Precipitation Monitoring (GPM) mission have been available since January 2015. With a finer grid box of 0.1◦, these products should provide more detailed information than their latest widely-adapted (relatively coarser spatial scale, 0.25◦) counterpart. Integrated Multi-satellitE Retrievals for GPM (IMERG) a...
متن کاملHydrologic responses of Zwalm catchment using the REW model
Hydrologic responses of the Zwalm catchment using the REW model: incorporating uncertainty of soil properties A. El Ouazzani Taibi, G. P. Zhang, and A. Elfeki Deveraux & Deloitte Partnership, Environmental Expert Group, Emile Wauters Street, 121, 1020 Brussels, Belgium Department of Water Management, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, The Netherlands Department of Wa...
متن کامل